Fully integrated miniature device for automated gene expression DNA microarray processing.
نویسندگان
چکیده
A DNA microarray with 12,000 features was integrated with a microfluidic cartridge to automate the fluidic handling steps required to carry out a gene expression study of the human leukemia cell line (K562). The fully integrated microfluidic device consists of microfluidic pumps/mixers, fluid channels, reagent chambers, and a DNA microarray silicon chip. Microarray hybridization and subsequent fluidic handling and reactions (including a number of washing and labeling steps) were performed in this fully automated and miniature device before fluorescent image scanning of the microarray chip. Electrochemical micropumps were integrated into the cartridge to provide pumping of liquid solutions. The device was completely self-contained: no external pressure sources, fluid storage, mechanical pumps, mixers, or valves were necessary for fluid manipulation, thus eliminating possible sample contamination and simplifying device operation. Fluidic experiments were performed to study the on-chip washing efficiency and uniformity. A single-color transcriptional analysis of K562 cells with a series of calibration controls (spiked-in controls) to characterize this new platform with regard to sensitivity, specificity, and dynamic range was performed. The device detected sample RNAs with a concentration as low as 0.375 pM. Experiment also showed that the performance of the integrated microfluidic device is comparable with the conventional hybridization chambers with manual operations, indicating that the on-chip fluidic handling (washing and reaction) is highly efficient and can be automated with no loss of performance. The device provides a cost-effective solution to eliminate labor-intensive and time-consuming fluidic handling steps in genomic analysis.
منابع مشابه
Self-contained, fully integrated biochip for sample preparation, polymerase chain reaction amplification, and DNA microarray detection.
A fully integrated biochip device that consists of microfluidic mixers, valves, pumps, channels, chambers, heaters, and DNA microarray sensors was developed to perform DNA analysis of complex biological sample solutions. Sample preparation (including magnetic bead-based cell capture, cell preconcentration and purification, and cell lysis), polymerase chain reaction, DNA hybridization, and elect...
متن کاملAutomated high-throughput probe production for DNA microarray analysis.
DNA microarrays have become an established tool for gene expression profiling. Construction of these microarrays using immobilized cDNAs is a common experimental strategy. However, this is extremely laborious, requiring the preparation of hundreds or thousands of cDNA probes. To minimize this initial bottleneck, we developed a comprehensive high-throughput robotic system to prepare DNA probes s...
متن کاملFeature Selection and Classification of Microarray Gene Expression Data of Ovarian Carcinoma Patients using Weighted Voting Support Vector Machine
We can reach by DNA microarray gene expression to such wealth of information with thousands of variables (genes). Analysis of this information can show genetic reasons of disease and tumor differences. In this study we try to reduce high-dimensional data by statistical method to select valuable genes with high impact as biomarkers and then classify ovarian tumor based on gene expression data of...
متن کاملSelf-contained, Integrated Biochip System for Sample-to-Answer Genetic Assays
Microfluidics-based biochip devices are developed to perform DNA analysis from complex biological sample solutions. Microfluidic mixers, valves, pumps, channels, chambers, heaters, and DNA microarray sensor are integrated to perform magnetic bead-based rare cell capture, cell preconcentration and purification, cell lysis, polymerase chain reaction, DNA hybridization and electrochemical detectio...
متن کاملIntegration and Reduction of Microarray Gene Expressions Using an Information Theory Approach
The DNA microarray is an important technique that allows researchers to analyze many gene expression data in parallel. Although the data can be more significant if they come out of separate experiments, one of the most challenging phases in the microarray context is the integration of separate expression level datasets that have gathered through different techniques. In this paper, we prese...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Analytical chemistry
دوره 78 6 شماره
صفحات -
تاریخ انتشار 2006